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Abstract

In this paper we report the investigations on a problem related
to DNA dynamics: thermal generation of localized pulses that are called
solitons.

The thermal generation of solitons in circular homogeneous DNA
is investigated by calculating the number of solitons as a function of the
absolute temperature. These calculations are effected by using two differeni
models for the DNA molecule. In both models the parameters are chosen
to match experimentally measured properties of the molecule. We find that
a significant number of solitons is generated at physiological temperatures,
and a T1/? law is followed at low temperatures.



Introduction

The understanding of energy transport along linear-chain molecules is a
long-standing problem that remains of great interest. Molecular dynamics simula-
tions have explored moderately anharmonic motion of short strands of deoxyribonu-
cleic acid (DNA) molecule near thermal equilibrium [1], and solitons have been sug-
gested by several researchers [2-7]. In the problem of solitons playing a role in the
dynamics of DNA, there is a particular aspect related to the question if solitons are
generated thermally at physiological temperature. In this work we report on studies
performed in order to answer to this question. Two simple nonlinear spring and mass
systems are used to model longitudinal wave propagation on a homogeneous circular
DNA molecule at different temperatures [8-12]. In the first model we consider the
DNA molecule as a one-dimensional Toda lattice with parameters chosen to match
experimentally measured properties [8-11). The second model is & two-dimensional
one [12]. In this case we represent the DNA by two Toda chains linked together
through springs with restoring force described by a Lennard-Jones potential [13-16].
Again the parameters are chosen to match experimentally measured properties of the

molecule.

The one-dimensional model

Here the DNA is modeled as a Toda lattice [8-11]. Each particle in the lattice
represents a single base pair, and the nonlinear spring represents the Van der Waals
potential between adjacent base pairs. Therefore considering a homogeneous system
cf{ N masses {each with mass M), whose longitudinal positions are denoted by yn(t),
n=12..,N, and connected to their nearest neighbours with massless noalinear
springs of potential V(yn — yn—1), Newton's second law for the longitudinal motion
of the masses is the set of ordinary differential equations

Mjjp = V'(yn-H - Yn) - V'(yn —yn =12, N (1)

Here dot denotes time differentiation and prime indicates a derivative with respect
to the argument. yo and yn4; satisfy the periodicity condition. The exponential
potential used by Toda [17] is



V(yn+1 —Un) = %BXP[‘b(ynH = ¥Yn)] + a(yn+1 ~ ¥n) (2)

which has the nature of physical atomic forces for a and b positive parameters. More-
over the Toda lattice is exactly integrable [17], and well developed analytical and
numerical techniques can be used to efficiently count the number of solitons. Indeed
here the method to count the solitons in a periodic chain is the spectral analyzer,
based on the inverse spectral theory for the Toda lattice [17]. The spectral analyzer
of the Toda lattice, described in detail elsewhere [8,10], has been used through out
the computations to count the number of solitons present in the system. And we have
assumed that the method still works for the perturbed versions of the Toda lattice.

By fitting the Toda potential to a 6-12 Van der Waals potential and con-
sidering experimentally measured properties of DNA [8-11], it is found that the mass
M of each particle representing a base pair is M = 1.282 x 10~%4kg, the nonlinear
parameter b is 6.176 % 10! ~! and the parameter a is 5.127 x 10~1°N,

Two different approaches to the thermalization of the PNA molecule have
been considered. At first, by assuming the amount of total energy in the system
equal to kgT (here kp is the Boltzmann constant and T is the absolute temperature
measured in K'), the system is thermalized by choosing the initial displacement of the
masses and their initial velocities from Gaussian random distributions, whose vari-
ances are related to the absolute temperature T' [8-10]. It is found that a significant
number of solitons, Ng, is generated at physiological temperature. Moreover, at low
temperatures, a T1/3 law is found for the dependence of the number of solitons on the
temperature [8-11]. A typical curve is shown in figure 1 where log(/Ns/N) is plotted
versus log(7"). The full line is the curve computed for a normalized version of the
unperturbed equations (1), for N = 65000 and with initial conditions such that the
total energy is only kinetic energy. At physiological temperature, 310K, the ratio
Ns/N has a value approximately equal to 0.31.

In the second approach to thermalization, in order to describe the interaction
of the system with a thermal reservoir at a finite temperature, a damping and a noise
force which simulate a thermal bath are added to the equations of motion for the
molecular displacement, thereby obtaining Langevin equations (18,19]. Then [10,11)
the equation of motion of each particle is given by the perturbed Toda equation

Mijjn = V'(!/u+l - !In) - V'(Uu ~ Yn-1) — Mly, + '}n(t)» (3)
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where I' is the damping coefficient and 7,(t) is the random force, assumed to be

Gaussian process with zero mean and correlation function of the form
< a(t)pne(t') >= 2MTkpTénnb(t — t'). (4)

Here 8,y is the Kronecker deita symbol and §(t - t') is the Dirac delta function.

Numerical integration of a normalized version of the perturbed equations of
motion (3), with different values for the normalized damping coefficient a, given by
a= I‘\/g, shows that, when thermal equilibrium is reached, in a system of N = 32
masses, the same significant number of solitons is generated in DNA at physiological
temperature {10,11}, namely Ng/N ~ 0.31.

Moreover from dynamical simulations for a system with N = 32, at different
temperatures T, and at various a’s it is found a good agreement with the T!/3 law
obtained as dependence of the number of solitons on the temperature {10,11]. A
typical case is shown in figure 1 where log(Ns/N) is plotted versus log(T). The
values denoted by the circle, the square and the triangle have been calculated for the
normalized version of the perturbed equations (3), with a number of masses N = 32
and normalized amping coefficients a = 5.0, a = 3.0 and a = 0.85, respectively.

Moreover we note that a study on now the number of solitons depends on
the number of masses in this one-dimensional system has been considered in [11].

The two-dimensional model

Here the DNA is described by two chains transversally coupled, where each
chain simulate one of the two polynucleotide strands of the DNA molecule [12]. Each
of the two chains is a spring and mass system. Each mass of the model repre-
sents a single base of the base pair. As in the above mentioned one-dimensional
mcdel, the longitudinal springs, connecting masses of the same strand, represent the
Van der Waals potential between adjacent base pairs. The transverse springs, con-
necting corresponding masses of the two strands, represent the hydrogen bonds that
connect the two bases in a pair. Again we assume to deal with a homogeneous DNA
molecule, thercfore each particle in our mass and spring system has mass M, and the
springy are assutned to be massless.

For each base pair, the model includes four degrees of freedom, u,, rp,
and vy, yn, for the two strands, respectively. The u, = u,(t) and v, = u,(t),
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n = 1,2,..., N denote the transverse diplacements, namely they correspond to the
displacernents of the bases from their equilibrium positions along the direction of
the hydrogen bonds that connect the two bases of the base pair. The z, = ,(t)
and yn = ya(t), n = 1,2,...,, N denote the longitudinal diplacements, namely they
correspond to the displacemeats of the bases from their equilibrium positions along
the direction of the phosphodiester bridge that connect the two bases of the same
strand.

As in the previous model, the anharmonic Van der Waals potentials are de-
scribed by the Toda potential. Denoting by I and /7 the two strands, the anharmonic
potentials are given by

-~

Vel = 1) = %exp[-w; — 1)) +a(l, ~ 1), (5)
and

Vil = 1L) = =expl=b(l, — 1))+ a(l, ~1z), (6)

o ™

for the two sdrands, respectively.

In expressions (5) and (6) & and b are parameters which will be given later.
Moreover in the above expressions I, is the equilibrium distance between «wo bases
in the same strand, namely it is the distance along the helix axis between a-lja-
cent base pairs, (I; = 3.4A [20]). Finally I, denotes the distance between two
bases in the strand denoted by 7, and similarly for l; in the strand denoted by

II. Their expressions are given by l:‘ = /(L + Znt1 — Zn)? + (upt1 — un)? and

l: = /(L + Yn+1 = ¥n)? + (Vn41 — vpn)?, respectively.
The two bases in a pair are connected through hydrogen bonds which we

model by a Lennard-Jones potential. This type of potential is generally accepted to
model the effect of hydrogen bonds [13-16]). Thus the anharmonic potential for the
transverse springs modeling the hydrogen bonds is given by

, r o 12 o 6
Vislty =l + i) =4 e l(t;.—lrﬂﬂ) - (f;. -’THM) ] ' ()

In expression (7) ¢ and o are parameters which will be given later. The
lenght of the hydrogen bond between the two bases in a pair is given by t:. =lr+1y.
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Here t,, denotes the distance between two bases of the two strands and its expression is
given by t',. = \/(IT + vn — un)? + (yn — Ta)?. Moreover [T is the equilibrium distance
between adjacent bases in a pair, namely the diameter of the helix, (Ir = 20A [20]),

and lyy = 2'/85 is the equilibrium length of the hydrogen bond.

As above, by fitting the Toda potential to a 6-12 Van der Waals potential and
considering experimentally measured properties of DNA, it is found [12] that the mass
M of each base is M = 6.41 x 10~3 kg, the nonlinear parameter b is 6.176 x 101%m~?
and the parameter a is 2.5635 x 10~1°N. And for th> Lennard-Jones' parameters,
the values £ = 1) = 0.22 eV = 0.35244 x 10719 Nm and o = 4.01 x 10~1° m can be
considered [12].

The equations of motion for the system described above are obtained from
the Hamiltonian of the system

N
H = }: [To + Vrr(ly = 1L) + Vierr(ly = ) + Vis(te — Ir + 15)] (8)

n=]

where /V is the number of base pairs in the DNA molecule. The kinetic energy T, is
given by

NI(22 + 62) + 3 M (52 +02) (9)

Tn = 5

l
2
and the anharmonic potentials Vi r(I,, — {1), Vr.ri(la = 1) and Vi (2, — Ir + ly) are
given by expressions (5), (6) and (7), respectively.

In order to describe the interaction of the system with a thermal reservoir
at a finite temperature, a damping force and a noise force are added to the equations
of motion for the molecular displacements [18,19)].

If we denote by dﬁ.i). i =1234adn = 1,2,..,N, the displacement
variables, namely dg.l) = z,, d$‘2) = Up, df.s) = Yn, ds.‘) = vy, the equations of motion
derived from the Hamiltonian (8) can be briefly written as

o OH
MdV) = - =2 10)
ady (

wherei =1,2,3,4,and n = 1,2,...,N.



Therefore to describe the interaction of the system with a thermal reservoir
at temperature T', a damping force and a noise force are added to eqs. (10), nam_ly

F$ = —MT d9 + 2(e) . (11)

Here I is the damping coefficient and ns.i)(t), 1 = 1,2,3,4, are the random forces acting
oun the bases. For the noises ns,')(t) it is assumed that they are gaussian processes with

zero mean and that their correlation function has the form
() nU(¢)) = MTkgT 64 &; 8t — 1) . (12)

Then the equations of motion for the system of particles are given by the
perturbed version of system (10), namely

oH
ad\

MdY = - ==~ v d + () (13)
wherei = 1,2,34,and n = 1.2,...,N.

Ini order to compute the number of solitons (/Ng) in the double chain, we
have averaged on the values for the number of solitor.s in each one of the two chains.
The latter values have been computed using again the spectral analyzer of the Toda
lattice. Our typical results are shown in figure 2, where log(Ns/N) is plotted versus
log(T') for different choices of the Lennard-Jones parameter €. In particular the
perturbed system (13) chosen as model of the double chain immerged in a thermal
bath kas been integrated for a number of masses N = 32 for each of the two identical
chains, and with a damping coefficient a = 1.0. The values denoted by the square
are computed for £ = £7;/10, and the ones denoted by diarmond are computed for
€ = €1/5. The other parameters in system (13) are the ones considered for the DNA
molecule.

In figure 2 the present results are compared with the ones obtained with the
one-dimensional model. In particular the full line describes the results obtained using
the simple unperturbed Toda lattice. And the values denoted by the cross are the
results obtained considering the perturbed model, with a damping coefficient a = 1.0
and a number of masses N = 32.

These results show that, when thermal equilibrium is reached, in a chain of

. = 32 masses, approximately the same significant number of solitons is generated in
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DNA at physiological temperature, namely Ns/N =~ 0.335. Moreover from dynamical
simulations for a system with N = 32 and at different temperatures 7, it is found a
good agreement with the TV/3 law obtained as dependence of the number of solitons
on the temperature. again for temperatures less than 100/ [8-12].

Finally it is important to note that this twn-dimensional system has been
considered (12] as model for the denaturation of the DNA molecule, with particular
attention to the phenomenon known as melting, that is when the two sdrands of the
DNA helix readly come apart.

Conclusions

In this work we have presented a study on the thermal generation of solitons
in DNA, considering two different models for the DNA dynamics.

The first model is a one-dimensional representation of DNA. The molecule
is thought as a simple one-dimensional system of masses and spring, with restoring
forces obtained by the exponential Toda potential. Each mass in the system represent
a base pair.

The second model is a two-dimensional representation of the molecule. In
this case the DNA is thought as two chains of masses and springs, with exponential
Toda restoring forces, linked transversally together through springs with restoring
force described by a Lennard-Jones potential. Each mass in the system represent a
base of a pair of the molecule.

With the one-dimensional model, two different approaches to thermaliza-
tion have been considered. The first approach is realized by choosing random initial
distributions for the displacements and the velocities of the masses such that the total
energy in the system is kgZ". On the other hand the second approach to thermal-
ization is performed perturbing the equations of motion with a damping force and
a noise force to model the interaction of the DNA molecule with a thermal reser-
voir at temperature T. Only this second approach to thermalizatior: is used for the
two-dimensional model.

Using these models we have analyzed the dynamics of a short homogeneous
circular DNA molecule of 32 base pairs. In both cases it is found that a significant
number of solitons, more than 1/3 of the number of base pairs, is generated at physi-
ological temperature. Moreover we have observed that tke number of solitons follows

the power law Ng o T1/3, for a wide temperature range, namely for T' < 100K.



Figure Captions

Figure 1. Logarithm to base 10 of the ratio Ng/N versus the logarithm to base
10 of the temperature measured in K. The full line is the curve calculated for the
unperturbed equations (1), with a number of masses in the Toda chain N = 65000,
and initial conditions such that the total energy is only kinetic energy. The values
denoted by the circle, the square and the triangle are calculated for the perturbed
equatjons (3) for the vaiue of the normalized damping coefficients a = 5.0, « = 3.0
and a = 0.85, respectively, and with a number of masses N = 32.

Figure 2. Logarithm to base 10 of the ratio Ns/N versus the logarithm to base
10 of the temperature T measured in K. The full line is the curve calculated for
the unperturbed (one-dimensional) equations (1), with a number of masses in the
Toda chain N = 65000, and initial conditions such that the total energy is only
kinetic energy. The values denoted by the crosses are the ones obtained from the
perturbed (one-dimensional) system (3) for a damping coefficient a = 1.0 and a
number of masses N = 32. The values denoted by the square and the diamond are
calculated fcr the perturbed (two-dimensional) system (13) with DNA parameters,
and Lennard-J)-.nes parameter ¢ equal to € = £7;/10 and € = £17/5, respectively.
Damping coefficients a = 1.0, and N = 32 masses in each chain.
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